

HYOSUNG MOTORS AMERICA INC. 5815 BROOK HOLLOW PKWY. SUITE-B, NORCROSS, GA 30071

FUEL INDUCTION SYSTEM

msa and & GV250 Eil GT250 | & El & BV650 Ei | GT650 | S/REi

All text, graph and other content appearing in this Manual are the property of Hyosung Motors America, 5815 Brook Hollow Parkway, Suite B, Norcross, GA 30071. You may not copy, print, reproduce, or distribute any portion, in whole or in part, of this manual in any way. All Rights Reserved ®.

Reasonable care is taken to ensure the accuracy of information and related materials provided by Hyosung Motors America in this Manual; however Hyosung Motors America is not responsible for misprints, out-of-date information, technical or pricing inaccuracies, typographical or other errors appearing in this Manual or any other Manual. Information and related materials are subject to change without notice. By using this Manual, you assume the risk that the information and materials in this Manual may be incomplete, inaccurate, out of date, or may not meet your needs and requirements.

Under no circumstances will Hyosung Motors America be liable for damages of any kind, including without limitation any special, indirect, incidental or consequential damages.

Hyosung Motors America reserves the right without prior notice to discontinue models, parts, accessories, clothing and other items or change specifications at any time without incurring any obligations.

©2010 HYOSUNG MOTORS AMERICA

INTRODUCTION

This manual is designed to provide Hyosung dealer technicians with a complete understanding of the construction and operating principles of motorcycle fuel induction systems.

The manual starts with a description of the basic principles of motorcycle fuel injection systems. Subsequent sections describe specific fuel and induction system circuits and operation, adding technical detail as the reader's comprehension grows.

Special care has been exercised in preparing clear, simple illustrations as an aid in visualizing the fuel and induction systems described in this text.

The variety of fuel and induction systems in use and frequent design changes preclude the listing of service and repair specifications. Refer to the Service Manual for service information on specific system models.

For additional information or questions contact Hyosung Motors America.

HYOSUNG MOTORS AMERICA INC. SERVICE TEAM

FHYOSUNG MOTORS AMERICA INC.

Table of Contents

Abbreviations Used In This Manual 1-1
The Basics of Electronic Fuel Injection Systems 2-1
Component Overview
Malfunction Codes & Defective Conditions 4-1
Service Data Chart 5-1
Location of Relays & Fuses 6-1
Electronic Control Modules
Wire Color Codes
Special Tools
Diagnostic Program 10-1
Diagnostic Tool Screen Overview 11-1
Diagnostic Tool Operation Manual 12-1

ABBREVIATIONS USED IN THIS MANUAL

A		L	
ABDC	: After Bottom Dead Center	LCD	: Liquid Crystal Display
AC	: Alternating Current	LED	: Light Emitting Diode
API	: American Petroleum Institute	LH	: Left Hand
ATDC	: After Top Dead Center		
		М	
в		Max	: Maximum
BBDC	: Before Bottom Dead Center	Min	: Minimum
BDC	: Bettom Dead Center		
BTDC	: Before Top Dead Center	0	
D		O2 Sensor	: Oxygen Sensor (O ₂ S)
DC	: Direct Current	P	
DOHC	: Double Over Head Camshaft	N DI	2
		RH	Right Hand
E		ROSwitch	: Roll Over Switch
ECU	: Engine Control Unit,	S	
	EI Control Unit	SAF	Society of Automotive Engineers
El	: Electric fuel Injection,	SAV Sciencid	Secondary Air Valve Solenoid
	Electric fuel Injector	CAN COLLIDA	
ET Sensor	: Engine Temperature Sensor	т	
	(ETS)	TDC	Top Dood Contor
		TD Sensor	Throttle Pacition Sensor (TDS)
F		IP Seisoi	. Infotue Position Sensor (TPS)
FP	: Fuel Pump		
G			
GP Switch	: Gear Position Switch		
1			
IAP Sensor	: Intake Air Pressure Sensor		
	(IAPS)		
IAT Sensor	: Intake Air Temperature Sensor (IATS)		
IG	: Ignition		
ISC Solenoid	: Idle Speed Control Solenoid		

For most of the existence of the internal combustion engine, the carburetor has been the device that supplied fuel to the engine. On many other machines, such as lawnmowers and chainsaws, it still is. But as motorcycles have evolved, the carburetor gets more and more complicated trying to handle all of the operating and emission requirements. For instance, to handle some of these tasks, carburetors have five different circuits:

- o Main circuit Provides just enough fuel for wide open throttle
- Mid-Range circuit Provides just enough fuel for fuel-efficient cruising
- **Idle circuit** Provides just enough fuel to keep the engine idling
- Accelerator pump Provides an extra burst of fuel when the throttle is first twisted, reducing hesitation before the engine speeds up
- Choke Provides extra fuel when the engine is cold so that it will start

In order to meet stricter emissions requirements, a fuel induction system that carefully controls the air-to-fuel ratio was introduced. Hyosung's fuel injection system uses oxygen sensors that monitor the amount of oxygen in the exhaust. The ECU uses this information to adjust the air-to-fuel ratio in real-time. This is called closed loop control – it was not feasible to achieve this precision of control with carburetors.

A microprocessor inside the Engine Control Unit (ECU) makes hundreds of changes per second. Each adjustment allows precise fuel and ignition mapping to the engine for the current environmental conditions. This results in maximum fuel economy and performance because each cylinder is given only the fuel it needs.

The Electronic Fuel Injection system uses several sensors to provide feedback about external and internal operating conditions to the electronic "brain" of the system, the ECU.

These operating conditions include:

- Rider Input (throttle position)
- Engine Load
- External Environmental Conditions (outside air temperature and pressure)
- Internal Engine Environmental (cylinder head temperature)

When the rider twists the throttle, the throttle valve opens more, letting in more air. The ECU "sees" the throttle valve open and increases the fuel rate in anticipation of more air entering the engine. It is important to increase the fuel rate as soon as the throttle valve opens; otherwise, when the throttle is twisted, there may be a hesitation as soon as air reaches the cylinders without enough fuel in it.

Each of these conditions must be known in addition to the information already "memorized" by the ECU. This is necessary for the ECU to perform the calculations necessary to deliver the optimum spark advance and fuel amount for each cycle for maximum performance as well as to meet government regulations for emissions.

The method of how the required amount of fuel is calculated is based on the EFI system. The ECU calculates and delivers spark and fuel on a set of predetermined spark and fuel "maps."

These "maps" provide the base information necessary to run the engine with only minor adjustments for external / internal environmental conditions, as well as, feedback from the exhaust gas oxygen (O2) sensor to continually adjust the amount of fuel delivered to the engine. This offers the advantage of "learning" the behavior of the engine over time, as well as, responding to a wider variety of conditions encountered while riding. The EFI system then continuously "tunes" the performance of the engine to compensate for changing conditions and provide maximum performance by using the O2 sensors input.

Fuel Injector

When the ECU receives all of its input from the various sensors and calculates this information, it then sends an electronic signal to the fuel injector. A fuel injector is nothing but an electronically controlled valve. It is supplied with pressurized fuel by the fuel pump, and it is capable of opening and closing many times per second.

Inside the Fuel Injector

When the injector is energized, an electromagnet moves the plunger that opens the valve, allowing the pressurized fuel to squirt out through a tiny nozzle. The nozzle is designed to atomize the fuel – to make as fine a mist as possible so that it can burn easily.

A Fuel Injector Firing

The amount of fuel supplied to the engine is determined by the amount of time the fuel injector stays open. This is called the pulse width, and it is controlled by the ECU.

The injectors are mounted in the intake manifold so that they spray fuel directly at the intake valves. This is called multi-port fuel injection. The fuel pump supplies pressurized fuel to all of the injectors.

In this picture (650 model), you can see both front and rear injectors mounted in the intake pipe. In order to provide the right amount of fuel, the ECU is equipped with a whole lot of sensors.

Engine Sensors

In order to provide the correct amount of fuel for every operating condition, the ECU uses six (6) different sensors to monitor rider demands and changing engine conditions to determine the correct fuel and spark requirements. These sensors are:

- 1. Throttle Position Sensor (TPS)
- 2. Pick-Up Coil
- 3. Intake Air Temperature Sensor (IAT)
- 4. Intake Air Pressure Sensor (IAP)
- 5. Engine Temperature Sensor (ET))(250cc) or Water Temperature Sensor (WTS)(650cc)
- 6. Oxygen Sensor (O2)

The TPS monitors the throttle valve position (which determines how much air goes into the engine) by how far the throttle is open, whether it is opening or closing, and how fast it is opening or closing so the ECU can respond quickly to changes, increasing or decreasing the fuel rate as necessary.

Throttle Position Sensor

The Pick-Up Coil determines the exact position of both cylinders in the combustion cycle and engine speed by picking-up the signal from the magneto rotor and sending this signal to the ECU to calculate ignition timing and fuel injector pulse width.

The IAT is located in the air box and measures the temperature of the air entering the engine. The ECU then determines how long the fuel injector pulse width will be and how much to advance or retard ignition timing.

Intake Air Temperature Sensor

The IAP is located in the intake pipe and measures the pressure or density of the air entering the engine. The ECU compares absolute pressure (sea-level) with the IAP readings, and then analyzes the air volume indirectly and adjusts accordingly.

Intake Air Pressure Sensor

The ET/WTS provides the ECU the current engine temperature. Proper fuel and spark delivery are dependent on the temperature of the engine. When the engine is cold the ECU will provide a richer fuel mixture and a higher degree of spark advanced. As the engine warms up to operating temperature the fuel mixture will lean and spark advance will decrease.

Engine Temperature Sensor

The O2 sensor monitors the amount of oxygen in the exhaust so the ECU can determine how rich or lean the fuel mixture is and make adjustments accordingly.

ECU (Engine Control Unit)

The computer that controls the fuel injection system is referred to as the engine control unit (ECU). The ECU is the central brain which contains the computerized fuel quantity maps. The main function of the ECU is to gather information from the various sensors, analyze their input, and activate the fuel injectors. The ECU is also equipped with some fail-safe functions. In the unlikely event of a component failure, the ECU will utilize input from the other sensors and in most cases override the failed component. The ECU is located under the seat and in front of the battery.

Ignition Coil

MSA EEO / GV650 Ei GT650/S/REI CODE

GT250/REI CODE	GV250 EF CODE
C24	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
C25	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

EI (Electric Fuel Injector)

The Fuel Injectors are mounted on the intake pipe. Fuel injectors are electrically opened on/off solenoid valves. They are either fully closed or fully open. The amount of fuel injected is dependent on how long the injector is kept open. Each injector is opened by a signal from the ECU. Fuel is only injected when it is needed – during each cylinder's intake stroke.

Inside the injector there's a spring-loaded plunger that closes against a valve seat. Once seated, the flow of fuel is blocked. When the solenoid coil within the injector assembly lifts the plunger, the pressurized fuel sprays into the cylinder. The battery supplies the power for the solenoid coil. The injector solenoid coils are a switch to ground circuit. The ECU provides an electrical ground when it determines the injector should be opened.

The injector tip's opening is designed to provide a spray pattern that atomizes the fuel to help it mix with incoming air.

MSA EEO/GV650Ei/GT650/S/REICODE			
GT250/REI CODE	GV250 E CODE		
C32			
C33			
DETECTED CONDITION	N POSSIBLE CAUSE		
Injector signal is interrupted continuous f 1 sec. when ECU confirm injector runn each combustion chamber.	for more than ning surge atInjector circuit open or short.Injector malfunction.ECU malfunction.		

ET/WT Sensor (Engine Temperature Sensor / Water Temperature Sensor)

The engine temperature sensor senses the temperature of the engine and sends the perceived temperature reading to the ECU. When the engine is cold the ECU will provide a richer fuel mixture and a higher degree of spark advance. As the engine warms up to operating temperature the fuel mixture will lean and spark advance will decrease. The engine temperature sensor, for 250cc models, is mounted on the front cylinder head below the intake pipe. The water temperature sensor, for 650cc models, is mounted on the rear side of the thermostat case.

msaa and / GV650 Ei/GT650/S/REI CODE			
GT250/REI CODE	GV250 EF CODE		
C15			
DETECTED CONDITION	N POSSIBLE CAUSE		
Output voltage is out of the specified ran and more. $0.08 \text{ V} \leq \text{ Sensor voltage} \leq 4.65 \text{ V}$	 ge for 2 sec. ET sensor circuit open or short. ET sensor malfunction. ECU malfunction. 		

GV 250 E ji (T 259) & El

ET sensor resistance		
Engine Temp.	Resistance (To ECU)	
-20 ℃ (-4 °F)	Approx. 75.5 KΩ	
0 °C (32 °F)	Approx. 28.7 KΩ	
20 °C (68 °F)	Approx. 12.2 KΩ	
40 °C (104 °F)	Approx. 5.6 KQ	
60 °C (140 °F)	Approx. 2.8 KQ	
80 °C (176 °F)	Approx. 1.5 KΩ	
120 °C (248 °F)	Approx. 0.5 KQ	
140 °C (284 °F)	Approx. 0.3 KQ	
160 °C (320 °F)	Approx. 0.2 KΩ	
180 °C (356 °F)	Approx. 0.13 KΩ	

maa ===== &V650Ei/GT650/S/REi

WT sensor resistance		
Engine Coolant Temp.	Resistance (To ECU)	
-40 ℃ (-40 °F)	Approx. 48.140 KΩ	
0 °C (32 °F)	Approx. 5.790 KΩ	
20 °C (68 °F)	Approx. 2.450 KΩ	
40 ℃ (104 °F)	Approx. 1.148 KΩ	
60 °C (140 °F)	Approx. 0.586 KΩ	
80 °C (176 °F)	Approx. 0.322 KΩ	
120 °C (248 °F)	Approx. 0.1163 KΩ	

GP Switch (Gear Position Switch)

The Gear Position switch is located below the final drive pulley/sprocket and mounted on the engine case. The Gear Position switch provides the input to the ECU of what gear the motorcycle is in. The ECU only utilizes the Gear Position switch at start-up. If the motorcycle is not in neutral the ECU will not allow the bike to start.

GV650 Ei/GT650/S/REI CODE

GT250/REI CODE	GV250 EI CODE		
C31			
DETECTED CONDITION	POSSIBLE CAUSE		
 GP switch voltage is out of the specified range for 2 sec. and more. 0.15 V < Switch voltage < 3.93 V 	 GP switch circuit open or short. GP switch malfunction. ECU malfunction. 		

IAP Sensor (Intake Air Pressure)

The IAP is mounted to the bottom side of the air box. The IAP measures the pressure or density of the air entering the engine. The ECU compares absolute pressure (sea-level) with the IAP readings, then analyzes the air volume indirectly.

The following example assumes the same engine speed and air temperature.

• Condition 1:

An engine operating at WOT (wide open throttle) on top of a very high mountain has a MAP of about 15" Hg or 50 kPa (essentially equal to the barometer at that high altitude).

• Condition 2:

The same engine at sea level will achieve 15" Hg of MAP at less than WOT due to the higher barometric pressure.

The engine requires the same mass of fuel in both conditions because the mass of air entering the cylinders is the same.

If the throttle is opened all the way in condition 2, the manifold absolute pressure will increase from 15" Hg to nearly 30" Hg (\sim 100 kPa), about equal to the local barometer, which in condition 2 is sea level. The higher absolute pressure in the intake manifold increases the air's density, and in turn more fuel can be burned resulting in higher output.

Anyone who has driven up a high mountain is familiar with the reduction in engine output as altitude increases.

MS3250

GT/GV 650-250

(Input ve	Output voltage (Input voltage 5 V, ambient temp. 25 °C, 77 °F)			
ALTIT (Refer	UDE rence)	ATMOSF PRESS	PHERIC SURE	OUTPUT VOLTAGE
(ft)	(m)	(mmHg)	kPa	(V)
0 2 000	0 610	760 707	100 94	Approx. 3.7 ~ 3.9
2 001 5 000	611 1 524	707 634	94 85	Approx. 3.3 ~ 3.7
5 001 8 000	1 525 2 438	634 567	85 76	Approx. 3.0 ~ 3.3
8 001 10 000	2 439 3 048	567 526	76 70	Approx. 2.7 ~ 3.0

IAT Sensor (Intake Air Temperature Sensor / IATS)

The IAT sensor is mounted to the bottom side of the air box. The IAT senses the temperature of the air entering the engine and sends this information electronically to the ECU. The ECU uses the information received from the IAT to adjust the air/fuel mixture.

IAT sensor resistance		
Intake Air Temp.	Resistance	
-40 ℃ (-40 °F)	44.642 KQ ± 5%	
- <mark>20 ℃ (-4</mark> °F)	14.958 ко ± 5%	
0 °C (32 °F)	5.734 KQ ± 5%	
20 °C (68 °F)	2.438 KQ ± 5%	
40 °C (104 °F)	1.141 KQ ± 5%	
60 °C (140 °F)	0.579 к <u>р</u> ± 5%	
80 °C (176 °F)	0.315 KQ ± 5%	
100 °C (212 °F)	0.182 KQ ± 5%	
120 °C (248 °F)	0.111 KQ ± 5%	
130 °C (266 °F)	0.088 KQ ± 5%	

ISC Solenoid (Idle Speed Control Solenoid)

The ISC is mounted on the right side of the motorcycle beneath the fuel tank. The ISC is controlled by the ECU. When first starting the motorcycle the ISC closes off an air passage that leads to the intake pipe. As the motorcycle begins to warm up the ISC slowly backs out of the air passage, thus allowing more air to enter the engine. ECU controls the ISC to allow more or less air to enter the engine.

msa and / GV650 Ei/GT650/S/REI CODE

GT250/REI CODE	GV250 EI CODE		
C27	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
DETECTED CONDITION	N POSSIBLE CAUSE		
ISC solenoid's step is out of the specified O step \leq Solenoid step \leq 250 step	 ISC solenoid malfunction. ISC solenoid's step is out of the specified range. ECU malfunction. 		

O2 Sensor (Oxygen Sensor)

The oxygen (O_2) sensor measures the percent of oxygen in the exhaust gas. The Fuel Injection is continuously adjusted to inject more or less fuel, keeping the amount of oxygen consistently at a level where the lowest amount of toxic gases is produced.

This air/fuel is called the stoichiometric ratio. (Theoretically, this is the A/F ratio for complete combustion.) With the air/fuel ratio controlled around this point by the oxygen sensor, the remaining toxic compounds in the exhaust gas are more efficiently converted to non-toxic compounds.

The oxygen (O2) sensor is mounted on the exhaust pipe just after the cross-over.

msa and / GV650 Ei/GT650/S/REICODE			
GT250/REI CODE	GV250 EI CODE		
C22			
DETECTED CONDITION	N POSSIBLE CAUSE		
Oxygen sensor signal is not inputted in E 600 sec. after the engine run.	 Oxygen sensor, Oxygen sensor heater circuit open or short. Oxygen sensor, Oxygen sensor heater malfunction. ECU malfunction. 		

msaan / GV650 Ei/GT650/S/REI CODE

GT250/REI CODE		FV2	50 Ei	CODE	
C43] 3		3	
DETECTED CONDITION	N		POSSIE	LE CAUS	SE
Oxygen sensor heater signal is not inputt	ed in ECU.	 Oxygen so or short. Oxygen so ECU malfu 	ensor, Oxyge ensor, Oxyge unction.	en sensor h en sensor h	neater circuit open eater malfunction.

Pick-Up Coil

The Pick-Up Coil is mounted to the inside of the magneto cover. The Pick-Up Coil determines the exact position of both cylinders in the combustion cycle and engine speed by picking-up the signal from the magneto rotor and sending this signal to the ECU to calculate ignition timing and fuel injector pulse width.

GV650 Ei/GT650/S/REICODE

GT250/REI CODE	GV250 E CODE						
C12	[1	2	1	2	1	2]	
DETECTED CONDITION	Ν			POSS	IBLE (CAUSE	
The pick-up coil signal does not reach E than 3 sec. after ECU receiving the ig signal.	CU for more nition switch	 Metaon ti Pick Pick ECU 	al partio he pick- -up coil -up coil J malfur	cles or fo up coil au l circuit op l malfunct nction.	oreign n nd rotor pen or s tion.	nateriel beir tip. hort.	ng attached

RO Switch (Roll Over Switch)

The Roll Over switch provides the input to the ECU that the motorcycle is not leaning greater than a 60 degree lean angle. If the vehicle exceeds a 60 degree lean angle the Roll Over switch will interrupt the operation of the ignition system and the fuel supply. The Roll Over switch is located under the rider's seat beneath the seat lock.

MS3250 / 2010 &UP GT/GV 650-250

2009 GT/GV 650-250

SAV Solenoid (Secondary Air Valve Solenoid)

The SAV is located on the left side of the motorcycle next to the thermostat housing on 650cc models and under the fuel tank on the right side of the motorcycle on 250cc models. The SAV is an electronically controlled solenoid that is operated by the ECU. The purpose of the SAV is to supply fresh air to the exhaust system to reduce exhaust gas emissions.

MSA EN / GV650 Ei / GT650/S/REI CODE

GT250/REI CODE	GV250 EF CODE				
C37					
DETECTED CONDITION	N POSSIBLE CAUSE	POSSIBLE CAUSE			
No voltage is applied from ECU to SAV 400 sec	 SAV solenoid circuit open or short. SAV solenoid malfunction. ECU malfunction. 				

TP Sensor (Throttle Position Sensor / TPS)

The TPS is mounted to the rear intake. The TPS monitors the throttle valve position (which determines how much air goes into the engine) by how far the throttle is open, whether it is opening or closing, and how fast it is opening or closing so the ECU can respond quickly to changes, increasing or decreasing the fuel rate as necessary.

All MS3250 / 2010&UP GT/GV 650-250

2009 GT/GV 650-250

msaes / GV650 Ei/GT650/S/REiCODE					
GT250/REI CODE	GV250 EI CODE				
C14	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
DETECTED CONDITION POSSIBLE CAUSE					
Output voltage is out of the specified ran and more. $0.1 \text{ V} \leq \text{ Sensor voltage} \leq 4.8 \text{ V}$	 TP sensor circuit open or short. TP sensor malfunction. ECU malfunction. 				

Fuel Pump

The fuel pump is located in the fuel tank and submerged in the fuel itself. When the engine is running the fuel pump operates continuously, thus exerting a constant 48-53 psi of pressure which supplies the maximum fuel demands of the engine.

GT250/REI CODE GV250EI CODE

C41	[4	1	4	1	4	1]
DETECTED CONDITION			PO	SSIBL	E CAUSE	
Voltage is applied continuous for more the battery voltage ≧ 3.2 V when fuel pum "OFF" position or battery voltage < 1.5 V pump relay is "ON" position.	an 5 sec., ip relay is when fuel	 Fuel p Fuel p ECU n 	ump relay o ump relay o nalfunction	circuit oj malfunc	ben or short. tion.	

msaeze & GV250 Ei| GT250/ & El & GV650 Ei| GT650|S/REi

MALFUNCTION	ALFUNCTION DETECTED ITEM DETECTED FAILURE (
CODE	DETECTEDITEM	CHECK FOR	
С	NO FAULT		
C12	Pick-up coil	The pick-up coil signal does not reach ECU for more than 3 sec. after ECU receiving the ignition switch signal. In this case, the code C12 is indicated.	
		Pick-up coil wiring and mechanical parts. (Pick-up coil, lead wire coupler connection)	
C14	Throttle position sensor (TPS)	The sensor should produce following voltage. 0.1 V \leq sensor voltage \leq 4.8 V Without the above range for 2 sec. and more, C14 is indicated.	
		Throttle position sensor, lead wire / coupler connection.	
C15	Engine temperature sensor (ETS) Water temperature sensor (WTS)	The sensor voltage should be the following. $0.08 \text{ V} \leq \text{sensor voltage} \leq 4.65 \text{ V}$ Without the above range for 2 sec. and more, C15 is indicated.	
	Selisor (WTS)	temperature sensor, lead wire / coupler connection.	
C17 / C18	Intake air pressure sensor (IAPS), NO.1 / NO.2	The sensor should produce following voltage. 0.5 V \leq sensor voltage \leq 4.5 V Without the above range for 6 sec. and more, C17 or C18 is indicated.	
		Intake air pressure sensor, lead wire / coupler connection.	
C21	Intake air temperature sensor (IATS)	The sensor voltage should be the following. 0.08 V \leq sensor voltage \leq 4.75 V Without the above range for 6 sec. and more, C21 is indicated.	
		Intake air temperature sensor, lead wire / coupler connection.	
C22	Oxygen sensor (O2S)	The oxygen sensor signal is inputted in ECU since then 600 sec. after the engine run. When this is the case, ECU not receive the signal, C22 is indicated.	
		Oxygen sensor, lead wire / coupler connection.	
C23	Roll over switch (RO switch)	The switch resistance should be the following for more than 3 sec. after holding the motorcycle vertically and ignition switch turns "ON" position. switch resistance $\approx \infty \Omega$ (Infinity) Without the above value for 3 sec. and more, C23 is indicated.	
		Roll over switch, lead wire / coupler connection.	

MALFUNCTION	DETECTED FAILURE CONDITION					
CODE	DETECTED TIEM	CHECK FOR				
C24 / C25	Ignition coil (IG coil), NO.1 / NO.2	Ignition signal is interrupted continuous by 31 times or more when ECU confirm ignition surge at each combustion chamber. In this case, the code C24 or C25 is indicated.				
		Ignition coil, wiring / coupler connection, power supply from the battery.				
C27	Idle speed control solenoid (ISC solenoid)	The idle speed control solenoid step should be the following. O step \leq solenoid step \leq 250 step Without the above range, C27 is indicated.				
		Idle speed control solenoid, lead wire / coupler connection.				
C31	Gear position switch (GP switch)	It judges from gear position voltage, engine speed and throttle position by ECU, when 0.15 V < Gear position voltage < 3.93 V for more 2 sec If gear position voltage get out of the above voltage, C31 is indicated.				
		Gear position switch, wiring / coupler connection, gearshift cam etc.				
C32 / C33 Fuel injector, NO.1 / NO.2		Injector signal is interrupted continuous for more than 1 sec. when ECU confirm injector running surge at each combustion chamber, C32 or C33 is indicated.				
	3	Injector, wiring / coupler connection, power supply to the injector.				
C37	Secondary air valve solenoid (SAV solenoid)	No voltage is applied from ECU to secondary air valve solenoid by 400 sec In this case, the code 37 is indicated.				
		Secondary air valve solenoid, lead wire / coupler connection.				
C41	Fuel pump relay	Voltage is applied continuous for more than 5 sec., battery voltage \geq 3.2 V when fuel pump relay is "OFF" position or battery voltage < 1.5 V when fuel pump relay is "ON" position. In this case, the code 41 is indicated.				
		Fuel pump relay, connecting lead wire, power source to fuel pump relay, fuel injector.				
C43	Oxygen sensor heater (O ₂ S heater)	The oxygen sensor heater signal is not inputted in ECU.				
	8	Oxygen sensor heater, lead wire / coupler connection.				

SERVICE DATA CHART

GV 250 E.I. GT 250 R. E.I

ITEM	SP	SPECIFICATION			
IAP sensor input voltage		4.5 ~ 5.5 V			
IAP sensor output voltage	Approx. 3.7 ~ 3.	Approx. 3.7 ~ 3.9 V when ignition switch "ON"			
TP sensor input voltage		4.5 ~ 5.5 V			
TR	Closed	Approx. 0.3 V			
I P sensor output voltage	Opened	Approx. 4.5 V	24 24		
IAT sensor resistance	0.0 [When In -40°C ~ 1	081 ~ 48.352 KQ Itake air temperature is 30°C (-40°F ~ 266°F)]	85		
IAT sensor resistance (each temperature	e) Refer	to page 48 (4-1-33)			
PO switch maintanas	∞ Q (Infin	ity) [at normal condition]			
NO SWICH TESISTATIOE	0 Ω [at li	eaned more than 60°]	3		
GP switch resistance	1	00 Ω ~ 2.0 KΩ			
Oxygen sensor heater voltage	E	Battery voltage			
SAV solenoid voltage	E	Battery voltage			
ET sensor resistance	0.1 [When F -20°C ~	102 ~ 81.000 KQ Engine temperature is 180°C (-4°F ~ 356°F)]	5.er		
	-20°C (-4°F)	Approx. 75.5 KΩ	2		
	0°C (32°F)	Approx. 28.7 KQ			
	20°C (68°F)	Approx. 12.2 KQ			
	40°C (104°F)	Approx. 5.6 KQ	22		
ET sensor resistance [To ECU]	60°C (140°F)	Approx. 2.8 KQ			
(each temperature)	80°C (176°F)	Approx. 1.5 KQ	2		
	120°C (248°F)	Approx. 0.5 KQ	i.		
	140°C (284°F)	Approx. 0.3 KQ			
	160°C (320°F)	Approx. 0.2 KQ	2		
	180°C (356°F)	Approx. 0.13 KQ			
Fuel injector resistance	11.4 ~ 1	2.6 Ω at 20°C (68°F)			
Fuel injector voltage	E	Battery voltage			
Fuel pressure of fuel pump	Approx. 3.4 ~ 3.7 kgf/	cm² (333 ~ 363 kPa, 48.4 ~ 52.6 ps	si)		
Ignition coil primary peak voltage	3	150 V and more			
	Primary	3.5 ~ 5.5 Ω			
Ignition coil resistance	Secondary	20 ~ 31 KQ			
Challen and anniated are	Pick-up coil	Approx. 85 ~ 105 Ω	G-L		
Stator Coll resistance	Charging coil	Approx. 0.2 ~ 1.0 Ω	Y-Y		
Magneto no-load performance	More than 60 V / 5,000 rpm				
Charging output (Regulated voltage)	13.5	~ 15.0 V / 5.000 rpm			

BV650 Ei/G1	[650 S RE I
-------------	---------------------

ITEM		NOTE	
IAP sensor input voltage		4.5 ~ 5.5 V	
IAP sensor output voltage	Ap		
TP sensor input voltage		4.9 ~ 5.1 V	
TR	Closed	Approx. 1.02 ~ 1.22 V	
I P sensor output voltage	Opened	Approx. 4.30 ~ 4.70 V	
IAT sensor resistance	[Whe -40°C	0.081 ~ 48.352 KQ en Intake air temperature is c ~ 130°C (-40°F ~ 266°F)]	
IAT sensor resistance (each temperature)	Re	efer to page 45 (4-1-30)	
	2 00	Infinity) at normal condition	
RO switch resistance	0 Ω	at leaned more than 60°	
GP switch resistance		100 Q ~ 2.0 KQ	
Oxygen sensor heater voltage	-	Battery voltage	
Fuel injector resistance	11.4	~ 12.6 Q at 20℃ (68°F)	
Fuel injector voltage		Battery voltage	
Fuel pressure of fuel pump	Approx. 2.96 ~ 3.16		
WT sensor resistance	[Wi -40°C		
	-40°C (-40°F)	Approx. 48.140 KG	
	0 °C (32°F) Approx. 5.790 KQ		
WT	20°C (68°F) Approx. 2.450 KQ		
(each temperature)	40°C (104°F)	0°C (104°F) Approx. 1.148 KQ	
Lart bill	60°C (140°F)	Approx. 0.586 KΩ	
	80°C (176°F)	Approx. 0.322 KΩ	
	120°C (248°F)	Approx. 0.1163 KG	
Ignition coil primary peak voltage		150 V and more	
1 · · · · · ·	Primary 3.5 ~ 5.5 Ω		
Ignition coll resistance	Secondary 20 ~ 31 KQ		
Chalan and an elaboration	Pick-up coil 110 ~ 140 Q		G-L
Stator coll resistance	Charging coil 0.2 ~ 0.4 Q		Y-Y
Magneto no-load voltage		Over 70 V / 5,000 rpm	
Battery standard charging voltage	1	13.5 ~ 15.0 V / 5,000 rpm	
msa e	1 7 0		
--------------	--------------		
--------------	--------------		

ITEM		SPECIFICATION	NOTE
IAP sensor input voltage	4.5 ~ 5.5 V		
IAP sensor output voltage	Approx. 4.0 ~ 4.	2 V when ignition switch " O " (ON)	
TP sensor input voltage		4.5 ~ 5.5 V	
	Closed	Approx. 1.81 KQ	
TP sensor resistance	Opened	Approx. 4.75 KQ	
TD sensor output voltage	Closed	Approx. 1.12 V	
TP sensor output voltage	Opened	Approx. 4.18 V	
IAT sensor voltage		4.5 ~ 5.5 V	
IAT sensor resistance		Refer to page 4-25	
TO sensor voltage	4.5 ~ 4.5 (To sensor swite	5.5 V at normal condition ch - "ON" at leaned more than 60°)	
SAV solenoid voltage		Battery voltage	
Oxygen sensor heater voltage		Battery voltage	
Fuel injector resistance	11.5	~ 13.5Ω at 20℃ (68°F)	
Fuel injector voltage		Battery voltage	
Fuel pressure	Approx. 3.4 ~ 3.7 k	gf/cm² (333 ~ 363 kPa, 48.4 ~ 52.6 psi)	
WT sensor voltage	4.5 ~ 5.5 V		
	0°C (32°F)	Approx. 5.790 KΩ	
	20°C (68°F)	Approx. 2.450 KΩ	
WT sensor resistance (To ECU)	40°C (104°F)	Approx. 1.148 KΩ	
	60°C (140°F)	Approx. 0.586 KΩ	
	80°C (176°F)	Approx. 0.322 KΩ	
Ignition coil primary peak voltage		150 V and more	
Ignition coil resistance	Primary	3.5 ~ 5.5 Q	
ignition con resistance	Secondary	20 ~ 31 KQ	
Magneto coil resistance	Pick-up coil	80 ~ 120 Q	G-L
Magneto con resistance	Charging coil	0.7 ~ 1.3 Ω	Y-Y

(10)

6V650 Ei

- (2) Main fuse (30A) ③ Head lamp fuse (15A)
- (5) Head lamp relay (10) Turn signal relay 6 Regulator / Rectifier ⑦ Side stand relay
- (8) Main relay

GV250 Ej

③ Main relay (4) Fuel pump relay (5) Head lamp relay

6 Main fuse (30A) 7 ECU (8) Head lamp fuse (15A) (9) Battery

GT250/REI & BV650Ei/GT650/S/REI

(1) Head Lamp Relay
 (2) Fuel Pump Relay
 (3) Main Relay
 (4) Turn Signal Relay

(1) Main Fuse(2) Head Lamp Fuse

- 16 Battery
- ⑦ Main fuse (30A)
- (8) Head lamp fuse (15A)
- (9) Side stand switch(12) Fuel pump relay(10) Head lamp relay(13) Turn signal relay
- (1) Cooling fan motor relay (1) Main relay

GV250 EI GT250 & EI & BV650 EI GT650 S/REI

(650cc wire color change (G), (B), (GR), (B))

2009 ONLY **EV650Ei**/GT650LS/REI

WIRE COLOR CODES

В	: Black
L	: Blue
Br	: Brown
G	: Green

Gr : Gray Lg : Light green

O : Orange

R : Red

CL		1 Indak	h le con
20	100	LIGINT	DILLE
00		Light	DIGC

- W : White
- Y : Yellow

BL	: Black with Blue tracer
BG	: Black with Green tracer

BR : Black with Red tracer

BY : Black with Yellow tracer

LG : Blue with Green tracer

LW : Blue with White tracer

BrB : Brown with Black tracer

GB : Green with Black tracer

GY : Green with Yellow tracer

GrR : Gray with Red tracer

OB : Orange with Black tracer

OG : Orange with Green tracer

OW : Orange with White tracer

RB : Red with Black tracer

WB : White with Black tracer

WR : White with Red tracer

YL : Yellow with Blue tracer

YR : Yellow with Red tracer

BBr	: Black with Brown tracer
BO	: Black with Orange tracer
BW	: Black with White tracer
LB	: Blue with Black tracer
LR	: Blue with Red tracer
LY	: Blue with Yellow tracer
BrW	: Brown with White tracer
GR	: Green with Red tracer
GrB	: Gray with Black tracer
GrW	: Gray with White tracer
OL	: Orange with Blue tracer
OR	: Orange with Red tracer
OY	: Orange with Yellow tracer
RW	: Red with White tracer
WL	: White with Blue tracer
YB	: Yellow with Black tracer

YG : Yellow with Green tracer

SPECIAL TOOLS

Mode Select Switch – Part # 09900-27000

Fuel Pressure Gauge – Part # 09915-54510

Diagnostic Scanner Kit – Part # 09900-27035

DIAGNOSTIC PROGRAM

I. Installing the CARMANSCAN LITE program (Diagnostic Scan Tool Program).

a. Install the download CD in your computer.

b. Double click the SETUP File and follow the procedures in the box's.

c. When finished installing the program, you can see the CARMANSCAN LITE download program's icon on your desktop.

II. Installing New Download Updates into the Diagnostic Scan Tool.

1. Move New Download file into you're (*C*) *Local Disk* file. ((*C*) *Local Disk* is located in *My Computer* file under *Hard Disk Drives*.)

- 2. Attach power cord to the Diagnostic Scan Tool and press the power up button.
- 3. From the Initial Screen
 - a. Select 05. S/W DOWNLOAD
- 4. Install the USB cable between Diagnostic Scan Tool and Computer

- 5. Double-Click on the *Carmanscan Lite* Icon, that's installed on your desk.
- 6. Click on the *Data Folder* dropdown button and select (*C*) *Local Disk*.

7. Select File to be Downloaded

CARWANGCIN Developed — The Next exhibiting for cash energies, and least PC	CABNARSCAN
	PPY
Read PC	(Read tools) (Dalato
Information 1. Tisk : GV396GH70685	Memory Status Capacity 256
2. Herister: 1. Holste 3. Vension: SPROBOLI IS20051230 4. Data type: HEPHDUSSAN	Used Spece : 6
	Free Epoce : 200

8. Select Copy and file will begin to download.

#CARADISCUIDeveload The Newtook Incheology for currenter	N	WEAKING OF Developed of the Maleren's Scherkey for Charleson C	
Her tox ant PC Data Folder (w C) and a	CABMANSCAN Internal Memory	PC CARMANSCAN Data Falder (ar C) Louista	
Сору		Coverses Nation 19	
Please PC	Moneory Status	Information	
3 Tele Eccepterope Folia - La Contrata - Contrata 3 Venes - Utilitado Folozofica 4 Educiona - NERGERAN 4 Educiona - NERGERAN	Capacity 256 Used Space 6 Free Space 250 User Ant Free Uset Maps	Numerical Stress work unit family developed Pre- Uted Space Free Space Uted Space Free Space	255 6 250 Monte

9. When file finishes downloading the Diagnostic Scan Tool Screen will display as follows:

USB MODE (Ver: 53S)
SYNCHRONIZATION : OK
DATA DOWNLOADING : OK

10. New Download Update is complete.

DIAGNOSTIC PROGRAM

III. Installing New Download Update into Motorcycle.

1. Connect Diagnostic Scan Tool to Motorcycle using:

Note: Only install 4-Pin connector to motorcycle at this time.

- 2. Turn Ignition Switch On and place the Engine Cut-Off switch in the on position.
- 3. Select 02. REPROGRAMING

0. INITIAL SCREEN			
01.	VEHICLE DIAGNOSIS		
02.	REPROGRAMING		
03.	SYSTEM SETUP		
04.	SCREEN CAPTURE VIEW		
05.	S/W DOWNLOAD		

4. Select 01. GV250GIN7050

2. REPROGRAMING

01. GV250GIN70505

- 5. Follow instructions on the screen
 - a. Turn Ign. Off
 - b. Connect Mode Select S/W (2 Pin)
 c. Turn Ian On
 - c. Turn Ign. On
 - d. Press ENTER on the key pad

BOOTLOADER REPROGRAMING *REPROGRAM INITAL ERROR* ECUNOT GO T OBOOT LOAD MODE TO REPROGRAM. PLEASE CHECK THE BELOW ITEMS AND [ENTER] 1. IG OFF 2. CONNECT MODE SELECT S/W (2PIN)
 3. IG ON (ENGIN OFF)

6. CAREFULLY FOLLOW INSTRUCTION ON SCREEN OR DAMAGE WILL OCCUR TO ECU.

BOOTLOADER REPROGRAMING
CAUTION
PLEASE CHECK THE BELOW ITEMS DEFORE REPROGRAM.
1. CHECK THE BATTERY CHARGING 2. DON'T TURN SCANNER OFF PROGRAMING 3. DON'T OPERATE THE KEY PROGRAMING 4. DON'T OPERATE THE MODE SW PROGRAMING 5. DON'T STARTING THE ENGINE PROGRAMING
IF YOU NOT FOLLOW THESE CAUSTION, THE ECU WILL BE BROKEN
AND PRESS [ENTER]

7. Press YES on the key pad.

E	300TLOADER REPROGRAMING			
	CAUTION			
PLEASI REPRO	PLEASE CHECK THE BELOW ITEMS DEFORE REPROGRAM.			
1. 2.: 3.:	DO YOU WANT TO START? (PRESS [YES] KEY)	VC		
5. DON'T STARTING THE ENGINE PROGRAMING				
IF YOU NOT FOLLOW THESE CAUSTION, THE ECU WILL BE BROKEN				
	AND PRESS [ENTER]			

8. Scanner will begin erasing program installed on ECU.

9. Scanner will begin to reprogram ECU.

BOOTLOADER REPROGRAMING	
GV250GIN70505 BOOTLOAD VERSION : v2008/6/5	
REPROGRAM STATUS:	
TRANS ECU REPROGRAM DATA	
	6 %

10. When reprogramming is complete press enter.

BOOTLOADER REPROGRAMING	
GV250 GIN70505 BOOTLOAD VERSION : v2008/6/5	
ECU REPROGRAM COMPLETE! CHECK AND PRESS [ENTER]	
	100%

11. CAUTION: FOLLOW PROCEDURES BELOW IN ORDER.

- a. Disconnect Mode Select S/W (2 Pin)
- b. Turn Ign. Off
- c. Wait 1 Minute
- d. Turn Ignition Switch On and place the Engine Cut-Off switch in the on position.
- e. Verify Motorcycles is running properly.
- f. Finished

DIAGNOSTIC TOOL SCREEN OVERVIEW

0. INITIAL SCREEN

0. INITIAL SCREEN

01. VEHICLE DIAGNOSIS 02. REPROGRAMING 03. SYSTEM SETUP 04. SCREEN CAPTURE VIEW 05. S/W DOWNLOAD

01. VEHICLE DIAGNOSIS

02. Flight Record Review

2. FLIGHT RECORD REVIEW	
SELECT MEMORY WITH LUP / DOWN I	
AND PRESS [ENTER]	
MEMORY 1	
MEMORY 2	
MEMORY 3	
MEMORY 4	

01. Vehicle Diagnosis

1. VEHICLE DIAGNOSIS	
01. GT/GV-250 02. GT/GV-650 03. MS3-125 / MS3-250	
I VEHICLE DIACNOSIS	_
1. VEHICLE DIAGNOSIS	\neg
01. DIAGNOSTIC TROUBLE CODES 02. CURRENT DATA 03. FLIGHT RECORD 04. ACTUATION TEST 05. IDENTIFICATION CHECK	

01. Diagnostic Trouble Codes

02. Current Data

1.2 CURRE	NT DATA
BATTERY MAP1 MAP2 TPS ATS ETS O2 SENSOR SAV SOLENOID	12.8 v 36 psi 36 psi 1.12 V 90 F 242 F 24 V OFF
FIX SCRN FULL	GRPH HELP

SCRN

FULL

DATTEDU	∎ n	v		E OFF	
MAD1	36	r nsi	CEAD DOS	4	
MAP2	36	psi	ISC	156	step
TSP	0		ENGINE SE	0	грт
ATS	242	с	TARGET EN	6 0	грт
WIS	242	С			
OZ SENSOR	24	v			
SAV SOL.	OFF				
02 SENSOR	LEA	N			
OZ HEATER	OFF				
CONDUCTIO	D ON				

GRPH

03. Flight Record

04. Actuation Test

05. Identification Check

1	5 IDENTIFICATI	ON CHECK	_
MODEL : SYSTEM :	GT/GV250 ENGINE		
MOI FUEI IMM HAR SOF	DEL L TYPE OBILIZER DWARE VER. TWARE VER.	: GY250 : GASOLINE : NOT APPLY : 05 : 03	

0. INITIAL SCREEN

0. INITIAL SCREEN

01. VEHICLE DIAGNOSIS 02. REPROGRAMING 03. SYSTEM SETUP 04. SCREEN CAPTURE VIEW 05. S/W DOWNLOAD

02. REPROGRAMING

2. REPROGRAMING

01. GV250GIN70505

0. INITIAL SCREEN

0. INITIAL SCREEN

01. VEHICLE DIAGNOSIS 02. REPROGRAMING 03. SYSTEM SETUP 04. SCREEN CAPTURE VIEW 05. S/W DOWNLOAD

03. SYSTEM SETUP

3. SYSTEM SETUP

- 01. SYSTEM CONFIGURATION
- 02. DATA SETUP
- 03. KEY PAD SETUP

- 04. SCREEN CONTRAST ADJUST
- 05. BATTERY STATUS

01. SYSTEM CONFIGURATION

SYSTEM CONFIGURATION

SERIAL NO : SJC-S0019 MAIN PROGRAM VER. : CM0950ENG20090528

TOTAL MEMORY SIZE : 1008 MBYTE USED MEMORY SIZE : EMBYTE TPMS INSTALLATION : NOT EXIST

02. DATA SETUP

03. KEY PAD SETUP

F6

	K	EY PA	D TEST	
Fl	F2	F3	F4	F5 ESC
		U	Р	
	LEFT	ENT	ER	RIGHT
		DO	WN	
	1	2	3	
	4	5	6	
	7	8	9	
	No	0	Yes	
	Press	LEFT] & [E	SC] to exit
	F1	F1 F2 LEFT 1 4 7 № Press	FI F2 F3 FI F2 F3 U LEFT ENT DOV 1 2 4 5 7 8 No 0 Press [LEFT	KEY PAD TEST F1 F2 F3 F4 UP ENTER DOWN 1 2 3 4 5 6 7 8 9 No 0 Yes Press [LEFT] & [E5]

04. SCREEN CONTRAST ADJUST

SCREEN CON	TRAST ADJUST
CONTRAST SETT WHEN THE USER I	ING WILL BE SAVED EXITS THE SCREEN
DARK(-)	BRIGHT(+)
F2	F5

05. BATTERY STATUS

0. INITIAL SCREEN

0. INITIAL SCREEN

01. VEHICLE DIAGNOSIS 02. REPROGRAMING 03. SYSTEM SETUP 04. SCREEN CAPTURE VIEW 05. S/W DOWNLOAD

04. SCREEN CAPTURE VIEW

N/A

05. S/W DOWNLOAD

MS3250 ONLY

0. INITIAL SCREEN

0. INITIAL SCREEN

01. VEHICLE DIAGNOSIS 02. REPROGRAMING 03. SYSTEM SETUP 04. SCREEN CAPTURE VIEW 05. S/W DOWNLOAD

01. VEHICLE DIAGNOSIS

0. INITIAL SCREEN

01. VEHICLE DIAGNOSIS

02. FLIGHT RECORD REVIEW

02. Flight Record Review

 2. FLIGHT RECORD REVIEW
AND PRESS [ENTER]
MEMORY 1
MEMORY 2
MEMORY 3
MEMORY 4

01. Vehicle Diagnosis

01. Diagnostic Trouble Codes

02. History Diagnostic Trouble

03. Current Data

1.2 CURRE	NT DATA
BATTERY MAP1 MAP2 TPS ATS ETS O2 SENSOR SAV SOLENOD	12.8 v 36 psi 36 psi 1.12 V 90 F 242 F 24 V OFF
FIX SCRN FULL	GRPH HELP

SCRN

FULL

GRPH

04. Flight Record

05. Actuation Test

INJECTION #1 DURATION UNTIL STOP KEY METHOD ACTUATION CONDITION IGN KEY ON ENGINE OFF Press (STRT), If You Are READY!
INJECTION #1 DURATION UNTIL STOP KEY METHOD ACTUATION CONDITION IGN KEY ON ENGINE OFF Press (STRT), If You Are READY!
DURATION UNTIL STOP KEY METHOD ACTUATION CONDITION IGN KEY ON ENGINE OFF Press (STRT). If You Are READY!
METHOD ACTUATION CONDITION IGN KEY ON ENGINE OFF Press (STRT), If You Are READY!
CONDITION IGN KEY ON ENGINE OFF Press (STRT), If You Are READY!
ENGINE OFF Press (STRT), If You Are READY!
Press (STRT). If You Are READY!
SELECT TEST ITEM USING UP/DOWN KE

06. Idle CO Adjustment

07. TPS Resetting

TPS RESETTING		
IN THE MODE, TPS VALVE RESET FUNCTION		
PRESS [ENTER] KEY.		

TPS RESETTING	1
	IGN. KEY ON
CONDITION	ENGINE STOP
PRESSIRESTI	IF YOU ARE READY

08. STEP Motor Initialization

STEP MOTOR	INITIALIZATION	
IN THIS MODE, STEI FUNCTION	P MOTOR VALVE RESET	
PRESS [ENTER] KEY.		
STEP MOTOR	INITIALIZATION	
STEP MOTOR I	TTIALIZATION	
	IGN. KEY ON	
CONDITION	ENGINE STOP	
PRESS [REST],	IF YOU ARE READY!	

REST

09. Identification Check

1.5 IDENTIFICATI	ON CHECK
MODEL : GT/GV250 SYSTEM : ENGINE	
MODEL FUEL TYPE IMMOBILIZER HARDWARE VER. SOFTWARE VER.	: GV250 : GASOLINE : NOT APPLY : 05 : 03

CAUTION : Any changes or modifications in construction of this device which is not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

NOTE : This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. The limits are designed to provide reasonable protection against harmful interference when the equipment is operated in commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

TABLE of CONTENTS

SAFETY

UNPACKING

I. GENERAL INFORMATION

1. GENERAL FEATURES	10-5
2. SPECIFICATIONS	10-5
3. PARTS DESCRIPTION	10-3
II. VEHICLE DIAGNOSIS	
1. VEHICLE AND SYSTEM SELECTION	10-6
2. DIAGNOSTIC TROUBLE CODES	10-7
3. CURRENT DATA	10-8
4. FLIGHT RECORD	10-11
5. ACTUATION TEST	10-16
6. IDENTIFICATION CHECK	10-18
III. FLIGHT RECORD REVIEW	
1. OPERATION FLOW	10-19
2. MODE APPLICATION	10-20
IV. SYSTEM SETUP	
1. CONNECTION METHOD	10-21
2. SYSTEM CONFIGURATION	10-21
3. DATA SETUP	10-22
4. KEY PAD TEST	10-23
5. SCREEN CONTRAST ADJUST	10-24
APPENDIX	

A. IMPORTANT MESSAGE DESCRIPTION

B. TROUBLESHOOTING

Safety Precautions

This equipment described in this manual is intended for use only by qualified personnel. Safe and effective use of this equipment is dependent upon the operator following normally accepted safety practices and procedures in conjunction with the special requirements detailed in this manual. Specific warning and cautionary statements will be found, where applicable, throughout this manual.

Where necessary, the WARNING statements and ICON will be described in this guide.

WARNING identifies conditions or actions which may damage DIAGNOSTIC TOOL or the vehicle.

IMPORTANT WARNING MESSAGES FOR SAFETY ARE AS FOLLOWS :

DO NOT DROP DIAGNOSTIC TOOL MAIN BODY. AND DIAGNOSTIC TOOL MUST ALWAYS BE COVERED BY THE SHROUD.

STRONG ELECTRO-MAGNETIC INTERFERENCE CAN DAMAGE DIAGNOSTIC TOOL.

A STRONG SURGE OR ELECTRONIC SHOCK IN THE POWER SUPPLY LINE CAN DAMAGE HISCAN ACE POWER SUPPLY. DO NOT USE DIAGNOSTIC TOOL UNDER THESE HARSH ENVIRONMENT.
DIAGNOSTIC TOOL KIT

The DIAGNOSTIC TOOL kit comprises the following standard along with the option kit where ordered. The kit contents should be checked upon receipt and damage or shortages reported to the supplier immediately.

[Figure 0.1 :DIAGNOSTIC TOOL KIT]

	PART NO.	PART NAME
1	22000-010	DIAGNOSTIC TOOL MAIN BODY
2	22000-020	DLC CABLE 16
3	22000-030	4+2PIN ADAPTOR
4	22000-040	USB CABLE
5	22000-050	COLOR BOX
6	22000-100	OPERATION MANUAL
7	22000-110	PROGRAM CD
8	22000-080	AC/DC ADAPTOR
9	22000-090	RUBBER SHROUD(Installed main body)

ICON OPERATION LEVEL ICON : LEVEL 1 OPERATION(INIT LEVEL) : LEVEL 1 OPERATION(MENU LEVEL) : LEVEL 1 OPERATION(MODE LEVEL) : PROCESS / RESULT MESSAGE : ERROR MESSAGE : WARNING MESSAGE : WARNING MESSAGE : SCREEN EXPLANATION

- : OPERATION GUIDE
- : HELP / TIPS
- : NOTE

I. GENERAL INFORMATION

1. General Features

DIAGNOSTIC TOOL offers the following functionality:

- On board diagnostic communication

- Special vehicle test emulation

This combination provides for easy and comprehensive diagnosis of the electronically controlled systems used on all vehicle range.

DIAGNOSTIC TOOL feature include :

Diagnostic communication with S&T Motors High resolution LCD display Soft touch key Shock protecting leather shroud PC communication facility PC software download with USB

2. Specification

Case	High strength PC ABS resin
LCD	320 X 240 dpi
	LED rear lightings
	Standard character display: 40 spaces X 12 lines
Keypad	Power ON/OFF,
	Variable function key x 6, arrow key x 4
	Fixed function key x 5
	Numeric key x 10
	Type: soft touch key method
Memory	Basic memory: 256MB
Operating	0°C - 50°C
temperature	
Voltage	7-36V DC input
Self-diagnosis	K-LINE Communication
coverage	CAN Communication
	Width: 125mm
Dimension	Length: 223mm
	Height: 68mm
Power consumption	3.6 Watts

II. VEHICLE DIAGNOSIS

1. VEHICLES AND SYSTEM SELECTION

1-1. OPERATION FLOW

(ENTER) \$

0Z.	C7.7CU=650	
	61/6/-030	
×	JARNI NG¥	

[FLOW II.1 : VEHICLE AND SYSTEM SELECTION SUB-MENU IN/OUT FLOW]

1-2. BASIC APPLICATION

Having connected and turned on DIAGNOSTIC TOOL, the vehicle and systems 1 and 2 selections must be made from the [1.0 VEHICLE DIAGNOSIS] screen.

The support functions differ from vehicle to vehicle and therefore the correct selection must be made. Selection can be made by scrolling up or down the screen and pressing ENTER.

Selection is made in the order of VEHICLE, SYSTEM 1, and SYSTEM 2.

2. DIAGNOSTIC TROUBLE CODES

2-1. OPERATION FLOW

[FLOW II.2 : DIAGNOSTIC TROUBLE CODES IN/OUT FLOW]

2-2. MODE APPLICATION

At this level, diagnostic trouble codes (DTC) are displayed for the selected ECM

Whenever the screen is opened or refreshed, the cursor moves to the beginning of the display and an audible warning will be given along with the number and description of the component from which the code has been generated.

By using the UP / DOWN key, the display may be scrolled.

EARS

This soft function key will clear the DTC currently held in the memory of the selected ECM. If this option is selected, a message requesting confirmation of the ERAS request will be displayed. The ENTER or ESC key should be used to confirm or cancel the request to clear the current DTC.

3. CURRENT DATA

3-1. OPERATION FLOW

[FLOW II.3 : CURRENT DATA MODE IN/OUT FLOW]

3-2. MODE APPLICATION

The sensor values and the ON/OFF state of the system switches of the selected ECM are displayed.

Scrolling up and down the data is possible by means of the UP / DOWN keys and more detailed data is available by Using the soft function keys as follows :

FIX

Executing the [Figure II.1 FIX ITEM] function that moves the item in inverted text to the top of the display. This item is held and does not move when the cursor keys are used to page through the display and therefore allows specific items to be compared directly to one another.

		1.3 CUBBENT	DATA	03/1	16
					٨
×	BATTERY		0	U	
×	MAP1		36	psi	•
×	NAP2		36	\mathbf{psi}	
	TSP		0	v	
	ATS		Z4Z	°C	
	VTS		242	°C	
	02 SENSO	B	24	v	
	SAV SOLEN	10I D	OFF		
					Ŧ
	FIX SCI	IN FULL	GRPH	HELP	

[Figure II.1 : FIX ITEM]

A fixed item may be released by depressing the **FIX** key again.

In the example, illustrated by figure 1, is fixed as denoted by the asterisk to the left of the item number.

SCRN

Pressing this key will change the number of displayed sensors or switch state which are 'active' from 8(MAX), 4, or 2(MIN). Where only 2 items are 'active', the rate at which DIAGNOSTIC TOOL update the display data will be faster than where a higher number of 'active' items are selected.

In the example illustrated by [Figure II.2 Split screen], only 2 'active' data items are selected

1.2 CURRENT	DATA	
P/N SWITCH	DRIVE	
STABLL CONBUST SNSR	OPEN	_
MAIN RELAY(FP)		
A/C CLUICH		
NIL LAMP		
IDLE AIR CONTROL SOL		
HOUNT CONTROL SOL		
ECT SENSOR		
FIX SCRN FULL	GRPH	

[Figure II.2 : Split screen]

FULL

Use of this key will cause maximum 22 data value to be displayed on the screen as illustrated in figure 3. The component description displayed will be abbreviated when this mode is used. The date may be scrolled by use of the UP / DOWN key.

	1.3	B CUBI	RENT DATA		
BATTERY	0	Ų	FUELL PUMP	OFF	
MAP1	36	\mathbf{psi}	GEAR POS.	4	
Marz	36	psi	ISC	156	step
TSP	0	0	ENGINE SP	0	rpn
ATS	242	°C	TARGET ENG	6	rpn
WTS	Z4Z	°С			
OZ SENSOR	24	V			
SAV SOL.	0FF				
02 SENSOR	LEAN				
OZ HEATER	OFF				
CONDUCTICE	ON				

[Figure II.3 : DISPLAY ALL ITEMS]

GRPH

Where more 2 'active' data items have been selected using the FIX key, pressing the GRPH key will cause the data for those items to be displayed in the form of a graph as illustrated in [Figure II.4].

FIX

Holding one item of two. When the UP / DOWN keys are used to scroll up and down the display, the item selected by FIX key does not move.

[Figure II.4 : CURRENT DATA (GRPH)]

4. FLIGHT RECORD

4-1 OPERATION FLOW

\$ 01				
VEHICLE	N	SYSTEM SELECTION		
Refer to	•"	Selecting Vehicle Mode"		
0.3 EL	GH	TRECORD	٦.	
0.012		TRECORD		
NTER &	_			
	-	1.4 FLIGHT REC	OBD	
	×	BATTERY	Ø	Û
	×	MAP1	36	psi
	×	NAP2	36	psi
		TSP	0	0
		ATS	Z4Z	°C
		WTS	242	°C
		02 SENSOR	24	v
		SAV SOLENOID	OFF	
		FIX INTERVAL: 780mS	CALL	RCRD
FIX 🖏	E	1.3.1 FIX ITEM		
CALL &	E	1.3.2 CALL MEMORIZED	DATA	

[FLOW II.4 : FLIGHT RECORD MODE IN/OUT FLOW]

4-2. MODE APPLICATION

The FLIGHT RECORD mode allows for the display and recording of data generated by the ECM as determined by the user of DIAGNOSTIC TOOL.

By using the UP / DOWN key, the display may be scrolled.

The function of the FLIGHT RECORD is determined by the following soft function keys :

This soft function key selects or releases the items for which data is to be recorded. The fixed are identified by means of an asterisk to the left of the item number on the DIAGNOSTIC TOOL screen. The maximum number of items, which may be selected for FLIGHT RECORD functions, is 8.

The data sampling time interval is displayed at the center of the bottom line of the screen.

CALL

FIX

This function is used to replay the recorded data. Stored data is only overwritten when recording and therefore the same data can be viewed more than once/without being over written provided that no recording takes place.

If the stored file to be viewed relates to vehicle or system, which differs from the current vehicle and system selection, or if no recording data, the following message will be displayed.

NO RECORDED DATA OR DIFFERENT SYSTEM DATA.

The message is displayed on the screen as shown in Figure 5. The user can select one of the items to read.

[[]Figure II.5 : FLIGHT RECORD (CALL)]

MEMORY 1 and MEMORY 4, each memory indicates built-in memory of DIAGNOSTIC TOOL.

If data is in the selected memory, stored data will be displayed, But the following message will be displayed if the ID of the stored record is different from that of current vehicle and system selection or if no recorded data.

NO RECORDED DATA OR DIFFERENT SYSTEM DATA

RCRD

end when either the END or ESC key is depressed. During the recording function, the screen takes the appearance of that illustrated in [Figure II.6]

If the quantity of data being recorded exceeds the capacity of the DIAGNOSTIC TOOL memory, the first recorded data of the current session will be progressively overwritten as recording continues

[Figure II.6 FLIGHT RECORD (RECORDING)]

The message is displayed on the screen as in the following figure.

[[]Figure II.7 : FLIGHT RECORD (RCRD)]

MEMORY 1 and MEMORY 4, each memory indicates internal memory of DIAGNOSTIC TOOL.

If user selects memory, [Figure II.7] is display. If this key is pressed without selected items, the following message is displayed.

SELECT ITEM WITH[FIX]

TRIG

This key is used to set trigger point in this recording process.

When TRIG key is depressed more than twice, only the latest TRIG key handled as trigger at trigger point.

If END key or ESC key is depressed before TRIG key, that time becomes the trigger point and recording will be ended.

After finishing the recording, screen will display stored data values in a numeric data form. The screen example is as follows:

	1.4	FLIGHT	RECORD		
					٨
BATTERY			0	U	
MAP1			36	psi	
MAP2			36	psi	
					Ţ
GRPH	•	HOME	•	HOME	

[Figure II.8 : FLIGHT RECORD (NUMERIC)]

In this numerical data display, GRPH key is used to see Graphic views for the items recorded by FIX key operation.

If the two items are selected, a graphical view is as follows.

	1.4 FLIGHT BE	CORD
255	×В АТТЕКУ	▲
0		
0		
36	MAP1	nei
	THEFT	- Per
36	1111	P51
36 Ø		

[Figure II.9 : FLIGHT RECORD (GRAPH)]

[T+5] MEANS SAMPLED TIME INDEX, AND CURRENT SCREEN DISPLAY THE TIME AFTER $5^{\rm TH}$ SAMPLING INDEX FROM TRIGGER POINT.

You can change sampled time index by $\text{LEFT}(\blacktriangleleft)$ or $\text{RIGHT}(\blacktriangleright)$ key. In graphic display, current sampled time index position is displayed as vertical line cursor. If this cursor is arrived end of screen, screen will be moved as half page.

5. ACTUATION TEST

5-1 OPERATION FLOW

04	ACTUATION	TEST
ENTER &		03
	1	.5 ACTUATION TEST 01/07
	INJECTOR #	1
	DURATION	UNTIL STOP KEY
	METHOD	ACTIVATION
	CONDITION	IG.KEY ON Engine off
	PRESS IS SELECT TE	TRT], IF YOU ARE READY I ST ITEM USING UP/DOWN KEY
	STRT STO	u

[FLOW II.5 : ACTUATION TEST MODE IN/OUT FLOW]

5-2 MODE APPLICATION

The ACTUATION TEST mode allows certain actuators to be forcibly driven by DIAGNOSTIC TOOL but this mode can only be supported according to the selected vehicle. The illustration of a typical screen is shown in [Figure II.10].

The actuator to be driven can be changed by using the UP / DOWN key to scroll through the list.

1	.5 ACTUATION TEST 01/07
INJECTOR #	1
DURATION	UNTIL STOP KEY
METHOD	ACTIVATION
CONDITION	IG.KEY ON Engine off
PRESS [S] SELECT TE	TRT], IF YOU ARE READY ! ST ITEM USING UP/DOWN KEY
STRI STO	Р

[Figure II.10 : ACTUATOR DRIVING]

The test must be performed with the vehicle in the state indicated by the CONDITION statement on the screen. In this illustration given, for example, the ignition key must be turned "on", and the engine must be running.

The duration of the test will either be fixed by DIAGNOSTIC TOOL and indicated on the screen or the duration dialogue will indicate

UNTIL STOP KEY

To begin an actuator test, the STRT key should be pressed. For fixed duration test, the message

COMPLETED!

will be display after an acknowledged code has been received from the vehicle. For tests of no fixed duration, the message

NOW ACTIVATING

will be displayed once an acknowledged code has been received from the vehicle and until the STOP key is pressed. In both types of test, the message

TEST FAILURE!

will be displayed if no acknowledge code is received from the Vehicle. The messages will be displayed for 0.5 seconds and then disappear.

6. IDENTIFICATION CHECK

6-1. OPERATION FLOW

Refer to " Selecting Vehicle Mode " 06. IDENTIFICATION CHECK
06. IDENTIFICATION CHECK
1.6 IDENTIFICATION CHECK
MODEL : GT/GU-250
SYSTEM : ENGINE
MODEL ; GTØ25
FUEL TYPE : GASOLINE
IMMOBILIZER : IN
PRODUCTION DATE: 2000/00/00
SERIAL NUMBER : 0000
PRODUCTION TYPE:
HARDWARE VER. : 00
SOFTWARE VER. : 00

[FLOW II.6: IDENTIFICATION CHECK]

Right after IDENTIFICATION CHECK mode is accessed, Part number and Software Version number will be displayed automatically.

III. FLIGHT RECORD REVIEW

1. OPERATION FLOW

Choose VEHICLE DIAGNOSIS to operate the FLIGHT RECORD REVIEW function.

In this mode, you can review recorded Flight Record data. The screen will be displayed by frame unit that is determined by data update.

[FLOW III.1 : FLIGHT RECORD REVIEW MODE IN/OUT FLOW]

2. MODE APPLICATION

TRIG

After finishing the recordings, screen will display stored data values in a numeric data form. The example screen is as follows:

2.	FLIGHT	RECORD	BEVIE	W	
BATTERY			0	U	
MAP1			36	psi	
MAP2			36	psi	
					Ŧ
GRPH	IOH ▶	1E 🕨		HOME	

[Figure III.1 : FIGHT RECORD (NUMERIC)]

In this numerical data display, **GRPH** key is used to see graphic views for the items recorded by **FIX** key operation.

When two items are selected, a graphical view is as follows.

	Z. FLIGHT RECORD	REVIEW	
255	×BATTERY	Ŷ	*
0			
0			
36	MAP1	psi	
36			-
Ø			▼
LIST	TT-21 [580 eS1	ELV HOME	

[Figure III.2 : FLIGHT RECORD (GRAPH)]

[T+5] MEANS SAMPLED TIME INDEX, AND CURRENT SCREEN DISPLAY THE DATA AFTER $5^{\rm TH}$ SAMPLING INDEX FROM TRIGGER POINT.

You can change sampled time index by UP or DOWN key. In graphic display, current sampled time index position is displayed as vertical line cursor. When this cursor is reached at the end of screen, the screen will be moved by half-a-page.

IV. SYSTEM SETUP

1. CONNECTION METHOD

The following four kinds of power supply methods can be used.

(1) DLC cable

(2) AC/DC adapter

2. SYSTEM CONFIGURATION

2-1. OPERATION FLOW

SYSTEM C	
	ONFIGURATION
SERIAL NO	: CIE-S0510
MAIN PROGRAM VER.	: CM0810ENG20080818
TOTAL MEMORY SIZE	: 256 MBYTE
USED MEMORY SIZE	: 6 MBYTE

[FLOW IV.1 : SYSTEM CONFIGURATION MODE IN/OUT FLOW]

2-2. MODE APPLICATION

This mode displays data for the following items.

1) SERIAL NUMBER

: Display product serial number of your DIAGNOSTCI TOOL

2) MAIN PROGRAM VERSION

: Display software version of DIAGNOSTIC TOOL

3) USED MEMORY SIZE

: Display Software internal memory size

3. DATA SETUP

3-1. OPERATION FLOW

01.	INITIAL SCRE	EN		
	02. SY	STEM SET	UP	
UZ		DATA S	ETUP	
	1. SOUND	ON 2.	LANGUAGE	BASIC
	3. UNIT CON SPEED	VERSION MPH] TEMP.	•F
	PRESSURE	psi	ANGLE	%
LEFT	C LE	FT ITEM S	ELECTION	
RIGHT	e de			
			HANGE +	
DOWN	G ITEM	VALUE C	HANGE-	
ENTER	C CO	NFIRM ITE	M SELECTI	ON

[FLOW IV.2: DATA SETUP MODE IN/OUT FOLW]

3.2 MODE APPLICATION

The operating parameters of DIAGNOSTIC TOOL may be set prior to vehicle testing. The following list details items which are user configurable.

1) SOUND : Determines whether or not the internal beep sounds at each key depression.

2) LANGUAGE : Determines whether or not a local language is used.

3) UNIT CONVERSION : The units of measure used by DIAGNOSTIC TOOL may be selected from either of the following :

Speed : Km/h, MPH Temperature : Fahrenheit, Centigrade Pressure : kPa, mmHg, inHg, psi, mbar Angle : degree, percent Airflow Volume : gm/s , Ib/m

Items are selected by using the LEFT / RIGHT key, and values may be changed using the UP / DOWN key.

4. KEY PAD TEST

4-1. OPERATION FLOW

[FLOW IV.3 : SYSTEM TEST MODE IN/OUT FLOW]

4-2. MODE APPLICATION

User can perform DIAGNOSTIC TOOL self-test.

5. SCREEN CONTRAST ADJUST

5-1. OPERATION FLOW

[FLOW IV.4 : CONTRAST ADJUST SCREEN]

5-2. MODE APPLICATION

This mode is for contrast adjust screen because LCD' brightness will change according to the temperature.

Contrast settings will be saved when exiting the screen.

APPENDIX

App. A IMPORTANT MESSAGE

DESCRIPTION

ABNORMAL VEHICLE POWER	
CHECK AND PRESS [ENTER]	

This message occurs when the external power supply is Not connected or is lower than 7.0V. The user must supply sufficient external power.

CAN'T COMMUNICATION PLEASE CHECK THE SYSTEM

The DIAGNOSTIC TOOL cannot perform the Communication. Because the system status is abnormal. The user must inspect the system.

COMMUNICATION ERROR CHECK THE SYSTEM, PRESS [ENTER]

A communication error occurs when the DIAGNOSTIC TOOL.

Displays data which is received via communication. After checking the system, press the key.

DIFFERENT SYSTEM PLEASE CHECK THE SYSTEM

This message occurs after opening the communication, when the system is different from the system selected by the user. After checking the system, the user should select the correct system again.

NO RECORDED DATA OR DIFFERENT SYSTEM DATA

This message occurs when there is no recorded data or there is a different system data in the FLIGHT RECORD mode.

NO TIPS. FOR MORE INFORMATION SEE THE SHOP MANUAL

This message occurs when the user selects an item that has no **TIPS.**

NO TROUBLE CODE FOR TIPS

This message occurs when the user presses the TIPS key, but there is no DTC in the DIAGNOSTIC TROUBLE CODES mode.

SELECT ITEM WITH [FIX]

This message occurs when the GRPH key is pressed without any item selected in the CURRENT DATA mode, or RCRD key is pressed without any item selected in the FLIGHT RECORD mode. In these cases, you must select an item with the FIX key.

SYSTEM ROM ERROR!

This message occurs when an error occurs in the ROM(Read Only Memory) of the DIAGNOSTIC TOOL. If you are having a problem with the DIAGNOSTIC TOOL, please try the procedures in appendix B.

App.B TROUBLESHOOTING

1. START-UP TROUBLE

(1) Symptom

- 1) No BEEP sound after power ON key is pressed
- 2) Blank screen is displayed
- (2) Causes Assumption and Recommended Trial
 - Causes Assume. 1: No power is supplied to the DIAGNOSTIC TOOL
 - Trial 1-1 : If power is supplied by DLC cable, check that the DLC cable is connected. If there is no problem with the DLC cable, change the power supply method.
 - Trial 1-2 : If power is supplied by AC/DC adapter, check that the AC/DC adapter voltage is over 12.0 volt. If there is no problem in the AC/DC adapter voltage, change the power supply method.

2. POWER SUPPLY TRIP MODE

To protect the DIAGNOSTIC TOOL and power supply from Harmful electrical shock-such as a surge in the power supply line-, there is a trip function in the DIAGNOSTIC TOOL power supply.

When the power supply has been tripped, the power supply status is still ON but the power supply has been halted. So this status can be mis-understood to be OFF status by the user, but the power supply is still alive. To release the trip mode, you must reset the power supply by pressing the ON/OFF key for more than 2 seconds (power OFF) and pressing the ON/OFF key for about 0.5 second (power ON).

A description of this trip function's symptom and recommended trial is described below.

(1) Symptom

1) LCD suddenly OFF, and no key operation can be performed in the power ON mode.

- (2) Causes Assumption and Recommended Trial
 - Cause Assume. 1: The DIAGNOSTIC TOOL power supply has entered the trip mode for surge protection.
 - Trial 1-1 :
 - a. Press the ON/OFF key for more than 2 seconds to turn the power supply OFF.
 - b. Press the ON/OFF key for more than 0.5 second to turn the power supply ON.
 - c. In normal mode, the power supply can be restarted by the reset trip.
 - d. If a severe or continuous surge is sent to the DIAGNOSTIC TOOL power supply,

physical recovery may be needed for the power supply of DIAGNOSTIC TOOL. This recovery may take a full day.

3. BLANK SCREEN DISPLAYED

(1) Symptom

1) BEEP sound after power ON key is pressed and a blank screen is displayed.

(2) Causes Assumption and Recommended Trial

Causes Assume. 1: LCD Contrast misadjusted

Trial 1-1 : Press the Left+F5 key or Left+F6 key after power ON if this problem is caused by maladjustment of the screen.

Causes Assume. 2 : Flash memory or ROM misinstalled. Trial 2-1: Check the main board status.